
Applied Topology Notes

Edward G. Hirst
City, University of London

November 5, 2019

An introduction to the concepts in Applied Topology, adapted from the 2019 LTCC course
of the same name given by Dr. P. Skraba. Delivered in the City, University of London,

Mathematics PhD Seminars.



E. Hirst

1 Simplicial Complexes

Initially we start by introducing the k-simplex. This is a generalisation of the triangle, to k
dimensions. It is the convex combination of (k + 1) points which are affinely independent.
Subsimplices of dimension k′ of a k-simplex are called k′-faces of the simplex. The simplices
may be labelled with an orientation, however in this consideration they are unoriented, and
the work is completed over Z2 which has the same effect as orientation. The first 4 simplices
are shown in 1.

Figure 1: Simplices of dimension 0 to 3.

A simplicial complex, ∆, is a set of simplices, {σa}, such that:

1) σa ∈ ∆ and σb ⊆ σa =⇒ σb ∈ ∆ ,

2) σa ∩ σb 6= ∅ =⇒ σa ∩ σb ∈ ∆ ,
(1.1)

The dimension of the simplicial complex is the dimension of its largest simplex. Opera-
tors on the complex can then be defined. Important ones are:
∼ p-section - the set of all p-simplices in the complex.
∼ Closure (Cl(∆)) - the set of all simplices in the complex, and all their respective faces.
∼ Boundary (∂p(∆)) - the (p− 1)-section of the closure of a complex with dimension p.
∼ Star (St(σ)) - an operator on a simplex in the complex, it is the set of all simplices which
contain the simplex in question as a face.
∼ Link (Lk(σ)) - an operator on a simplex in the complex, it is defined Cl(St(∆)) −
St(Cl(∆)).

Examples of the first three operators are shown in figure 2.

Figure 2: For simplicial complex α, the 1-section, closure, and boundary are given.
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As an aside, a useful generalisation of the simplicial complex, is the cellular complex.
Originally named the CW-complex, standing for closed, and weakly topological. Instead of
the complex being a composition of simplices, it is a composition of cells, where a k-cell is
homeomorphic to the k-dimensional open ball. These object and other complexes also find
various use in applied topology, however here the focus is on simplicial complexes.

2 Chain Complexes and Homology

For a prespecified simplicial complex, a chain can be defined as a linear combination of
simplices from the complex. Therefore c ≡ Σaλaσa, where the sum is over the full set of
simplices in the complex, and λa ∈ {0, 1}, such that all simplices from the complex are either
in, or not in, the chain.

This defines a chain group, Ck, where the elements are all possible chains that can be
formed exclusively from k-simplices in the complex. This group’s representation is a diagonal
matrix of dimension equal to the number of k-simplices in the complex, then the diagonal
elements are the λa values as described in each chain in question.

Clearly from here, the section, closure, and boundary operators map to chains. Impor-
tantly the boundary operator, since it is linear, can act directly on a chain. The boundary
operator will map from the Ck chain group to the Ck−1 chain group. This hence forms a
sequence, known as the chain complex: {Ck, ∂k}, of all chain groups that can be formed from
the complex, and the corresponding boundary operators that map between them. Note that
the ∂0 boundary operator will map to the trivial group as we define ∂0(any 0-simplex) = 0.

The chain complexes require ∂k · ∂k+1 = 0, such that image(∂k+1) ⊆ kernel(∂k). This
identifies elements in the kernel of a boundary operator with closed elements, the kernel is
known as the ’cycle space’, as its elements are cycles, and action of the ∂k boundary ele-
ment on a cycle leads to repetition of its (k − 1)-faces which is zero under the modulo Z2.
Elements in the image of a boundary operator are identified with exact elements, the image
is the ’boundary space’ as it is mapped to by the boundary operator. All boundaries are
trivially cycles, however not all cycles in a chain act as boundaries.

Therefore homology groups are defined for each chain group in the chain complex, which
measure the extent to which the sequence fails to be exact. They are defined:

Hk ≡
kernel(∂k)

image(∂k+1)
, (2.1)

where the rank of each homology group is known as the Betti number, and is a measure of
the number of group generators such that

βk ≡ rank(Hk) . (2.2)

The homology classes thus represent the cycles which are not boundaries, which can be iden-
tified with holes in the underlying simplicial complex. Chain complexes can be represented
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diagrammatically as shown in figure 3.

Figure 3: Three chain groups in a chain complex, showing how the boundary operators map between them.
The image of ∂k+1 is contained within the kernel of ∂k, if all elements in the kernel are contained within the
previous operator’s image the homology group is trivial.

To see the practicality of homology groups we examine perhaps the most famous topo-
logical invariant. The Euler characteristic is typically defined

χ ≡
d∑

i=0

(−1)i|Ki| , (2.3)

where d is the dimension of the simplicial complex, and |Ki| is the number of i-simplices in
the simplicial complex (i.e. cardinaltiy of the set of i-simplices, Ki). This is easily shown for
simple polyhedra by the invariant value χ′ = (#vertices) − (#edges) + (#faces). Which
are the 0 to 2 simplices in an alternating sum as generalised above. Therefore noting that
the number of i-simplices is the rank of the ith chain group we can write
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χ =
d∑

i=0

(−1)i|Ki| ,

=
d∑

i=0

(−1)irk(Ci) ,

=
d∑

i=0

(−1)i(rk(ker(∂i)) + rk(im(∂i)) ,

=
d∑

i=0

(
(−1)i(rk(ker(∂i))− rk(im(∂i+1))

)
+ (rk(im(∂0))− rk(im(∂d))) ,

=
d∑

i=0

(−1)i(rk(ker(∂i))− rk(im(∂i+1)) ,

=
d∑

i=0

(−1)irk(Hk) ,

=
d∑

i=0

(−1)iβk .

(2.4)

In the above, the chain group is split into kernel and image of boundary operator, as it is
a monomorphism such that everything is mapped. The second sum is shifted by one index,
and the images of the boundary operators either end of the sequence are written explicitly,
although both are defined to be zero in the sequence so are subsequently ignored. The result
is the Euler characteristic as the alternating sum of Betti numbers, showing the relevance of
homology classes in determining this invariant.

As another aside, a cochain complex is the category theory dual of a chain complex. Its
coboundary operators dk map between the dual chain groups in the direction of increasing
simplex dimension such that dk : Ck−1 7→ Ck. The coboundary operators satisfy dk ·dk−1 = 0;
and the cohomology groups measure the failure of exactness of the cochain complex with

Hk ≡ kernel(dk)

image(dk−1)
. (2.5)

In the field of differential geometry the de Rham cochain complex studies forms in the cochain
groups, with the exterior derivatives as the coboundary operators.
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3 Chain maps and Persistent Homology

Firstly we define a filtration, which is a series of simplicial complexes such that

∆a ⊇ ∆b ⊇ ∆c ⊇ ... ⊇ ∆n . (3.1)

A practical way to think about this is that each simplicial complex represents a triangulation
of the single underlying topological space, however the complexes which are subcomplexes of
others are triangulations at lower resolutions. In the same way as before for each simplicial
complex in the filtration we can create a chain complex. The chain groups between com-
plexes are then connected by monomorphisms, and the full set forms a chain map known as
a persistent chain complex. This chain map is a commutative diagram between boundary
operators and monomorphisms along the filtration. Part of a chain map is shown in figure
4.

Figure 4: A chain map, where each row is a chain complex for a different simplicial complex in the filtration.
Columns are the monomorphisms along the filtration for each chain group dimension. Overall this produces
a commutative diagram.

Constructing homology groups, as before, for each chain group in the chain map allows a
persistence module to be defined for each simplex dimension k, where the monomorphisms
between the chain complexes now correspond to linear maps. Therefore

Pk(filtration) ≡ {Hk(∆i)}∀i & Hk(∆i) 7→ Hk(∆j) . (3.2)

Moving down the filtration homology classes are born, where holes are made by removing
simplices whilst leaving their cyclic boundaries. In addition classes also die, where simplices
are removed from a cycle bounding a hole (connecting the hole to the simplicial complex
boundary), or the simplices connecting two holes are removed merging the holes and hence
classes.

Due to Gabriel’s theorem for finite quivers, the persistence modules can be represented
by this birth/death class structure as a ’barcode’. The interpretation of this barcode decom-
position is still open. It can be represented diagrammatically using a lower-star filtration

5



E. Hirst

function f : ∆ 7→ R which is monotonic such that each complex ∆i ∼ f−1(−∞, i] is con-
tained as a sublevel set within the function values for the larger complexes in the filtration.

Plotting the homology classes throughout the filtration, and using the Elder rule which
states the younger homology class dies when classes merge, the barcodes become clear, as
shown in figure 5.

Figure 5: A plot of a lower star filtration to represent the simplicial complex along the horizontal axis, and
motion through the filtration along the vertical axis. Moving along the filtration new homology classes are
born as components and die as the components merge. This gives the barcode on the right.

The barcodes can then be used to define persistence diagrams for the classes, as shown
below. From here multiple persistence diagrams can be compared with bottleneck distance
to determine the stability of the filtration representation of the underlying topological space.

Figure 6: A simple example of a persistence diagram. Here two classes are born at the same point in the
filtration, however one dies later, and another is born later but dies earlier. These diagrams are useful in
determining stability of the filtration.
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